Electronic Structure of Three-Membered Rings Containing P Atoms-PE Spectroscopic Investigations and Model Calculations

Rolf Gleiter, ${ }^{* \dagger}$ Wolfgang Schäfer, ${ }^{\dagger}$ and Marianne Baudler ${ }^{\ddagger}$
Contribution from the Institut für Organische Chemie der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg, Germany, and the Institut für Anorganische Chemie der Universität Köln, Greinstrasse 6, D-5000 Köln 41, Germany. Received March 8, 1985

Abstract

The He I photoelectron (PE) spectra of three-membered rings with one to three phosphorus atoms have been measured. The assignment of the first bands is based on empirical correlations and on calculations using semiempirical models (MNDO, MINDO/3) as well as the Hartree-Fock SCF method. These investigations permit deductions at the sequence of the highest occupied MO's of phosphirane, diphosphirane, cyclotriphosphane, thiadiphosphirane, and azadiphosphirane. The PE spectra of a diphosphaarsirane $(t-\mathrm{BuP})_{2}(t-\mathrm{BuAs})$ and of a cyclotriarsane $(t-\mathrm{BuAs})_{3}$ also have been recorded and their electronic structures are discussed.

Three-membered rings containing phosphorus and arsenic have come into focus due to the recent synthetic success in several laboratories ${ }^{1-5}$ and the recognition that also in larger molecules the three-membered ring moiety serves as a building block. ${ }^{1,6-8}$

To understand the bonding properties in compounds containing three-membered rings with P atoms we have investigated the He I photoelectron (PE) spectra of a series of model compounds. The compounds are the following: trans-1-tert-butyl-2-methylphosphirane (1a), ${ }^{9}$ 1,2-di-tert-butyldiphosphirane (2a), ${ }^{10}$ tri-tert-butylcyclotriphosphane (3a), ${ }^{11}$ 2,3-di-tert-butyl-1-thiadiphosphirane (4a), ${ }^{12}$ 1-isopropyl-2,3-di-tert-butyl-1,2,3-azadiphosphirane (5a), ${ }^{13}$ tri-tert-butyldiphosphaarsirane (6), ${ }^{14}$ and tri-tert-butylcyclotriarsane (7). ${ }^{5}$

$\begin{array}{ll}\mathbf{R}^{\prime}=\text { tert }- \text { butyl } \\ \mathbf{R}^{2}=\mathrm{CH}_{3} & 1 a \\ \mathbf{R}^{\prime}=\mathbf{R}^{2}=\mathrm{CH}_{3} & 1 b\end{array}$
$R^{\prime}=R^{2}-H^{3}$ १c

$R=$ tert - butyl $4 a$
$R=\mathrm{CH}_{3} \quad 4 b$
$R=H$

$R=$ tert-butyl $2 a$
$\mathrm{R}=\mathrm{CH}_{3} \quad 2 \mathrm{~b}$
$\mathrm{R}=\mathrm{H}$

$\mathrm{R}^{\prime}=$ isopropyl
$R^{2}=$ tert-butyl $\mathrm{R}^{\prime}=\mathrm{R}^{2}=\mathrm{CH}_{3} \quad 5 \mathrm{~b}$
$\mathbf{R}^{1}=\mathbf{R}^{2}=\mathrm{H}$

R=tert-butyl 3 a
$\begin{array}{ll}\mathrm{R}=\mathrm{CH}_{3} & 3 \mathrm{~b} \\ \mathrm{R}=\mathrm{H} & 3 \mathrm{c}\end{array}$

6

7

PE spectroscopic studies on molecules are especially useful to chemists interested in the electronic structure of molecules if the PE bands can be correlated with the molecular orbitals (MO's) obtained from the corresponding model calculation. Since our argumentation is based on the MO description of molecules 1-7 we shall start our discussion describing the results of the model calculations.

Model Calculations

We have carried out semiempirical (MNDO ${ }^{15}$ and MIN$\mathrm{DO} / 3^{16}$) and ab initio calculations using a minimal basis (STO$3 \mathrm{G}^{19}$). The tert-butyl groups were not considered explicitely. They

[^0]were replaced by methyl groups for the semiempirical calculations ($\mathbf{1 b} \mathbf{- 5 b}$) or hydrogen atoms (models $1 \mathbf{c}-5 \mathrm{c}$). For 4 and 5 the MNDO method has to be used since the MINDO/3 procedure provides no parameters to treat $\mathrm{P}-\mathrm{S}$ and $\mathrm{P}-\mathrm{N}$ bonds. Since for most compounds no geometrical parameters have been reported, we have calculated them using the semiempirical procedures by minimizing the heat of formation for the methyl derivatives $\mathbf{1 b}-5 \mathbf{b}$ as well as the parent compounds $\mathbf{1 c}-5 \mathrm{c}$ with respect to the bond lengths and bond angles. For the HF-SCF calculation on 1c-3c we adopted the geometries derived by the MINDO/3 method; ${ }^{16-18}$

[^1]Table I. Most Relevant Geometrical Parameters Calculated for $\mathbf{1 b}$ to $\mathbf{5 c}$. For $\mathbf{1 b} \mathbf{b} \mathbf{3 c}$ We List the MNDO (First Line) and MINDO/3
Parameters. Heat of Formation $\left(\Delta H_{\mathrm{f}}{ }^{\circ}\right)$ in $\mathrm{kcal} / \mathrm{mol}$, Bond Length in \AA

Table II. Calculated Orbital Energies and Wave Functions of Phosphirane (1c) and trans-1,2-Dimethylphosphirane (1b) Using the MINDO/3 (a), MNDO (b), and HF-STO 3G (c) Model

compd	Γ	$-\epsilon_{j}(\mathrm{eV})$			$\begin{gathered} \% \mathrm{P} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} \% \mathrm{C} \\ \mathrm{~b} \end{gathered}$	MO type
		a	b	c			
1b	a^{\prime}	8.95	10.29		56.0	24.6	lone pair
	$\mathrm{a}^{\prime \prime}$	9.77	10.94		45.1	35.6	Walsh PC
	a^{\prime}	10.54	11.98		21.7	40.4	Walsh PC
1c	$6 \mathrm{a}^{\prime}$	9.39	10.81	7.57	58.4	33.9	lone pair
	$3 \mathrm{a}^{\prime \prime}$	10.37	11.38	9.05	50.4	41.4	Walsh
	$5 \mathrm{a}^{\prime}$	11.05	12.64	10.99	27.6	44.7	Walsh

[^2]Table III. Calculated Orbital Energies and Wave Functions of Diphosphirane (2c) and 1,2-Dimethyldiphosphirane (2b) Using the MINDO/3 (a), MNDO (b), and HF-STO 3G (c) Model

compd	Γ	$-\epsilon_{j}(\mathrm{eV})$			$\begin{gathered} \% \mathrm{P} \\ \mathrm{~b} \end{gathered}$	$\begin{gathered} \text { \% C(ring }) \\ \mathrm{b} \end{gathered}$
		a	b	c		
cis-2c	$6 \mathrm{a}^{\prime}$	9.17	10.92	7.15	94.4	1.9
$\left(C_{s}\right)$	$3 \mathrm{a}^{\prime \prime}$	9.36	11.03	6.96	68.3	23.3
	$5 \mathrm{a}^{\prime}$	10.41	12.55	9.99	58.5	19.0
	$2 a^{\prime \prime}$	11.69	13.05	11.83	48.0	22.1
trans-2c	5a	9.04	10.77	6.64	93.3	0.1
$\left(C_{2}\right)$	4 b	9.68	11.30	7.75	69.0	31.4
	4a	10.03	12.09	9.27	65.8	14.1
	3b	11.62	13.40	11.40	35.6	26.3
$c i s-2 \mathrm{~b}$	$9 \mathrm{a}^{\prime}$	8.65	10.30		85.6	1.6
$\left(C_{s}\right)$	$6 \mathrm{a}^{\prime \prime}$	8.97	10.39		66.9	17.4
	$8 \mathrm{a}^{\prime}$	9.92	11.39		56.6	15.8
	$5 \mathrm{a}^{\prime \prime}$	11.32	12.30		39.7	23.4
trans-2b	8a	8.56	10.15		86.1	0.2
$\left(C_{2}\right)$	7 b	9.31	10.82		61.6	26.1
	7 a	9.53	11.42		59.5	11.4
	6b	11.35	12.67		36.0	19.6

Table IV. Calculated Orbital Energies and Wave Functions of Cyclotriphosphane (3c) and Trimethylcyclotriphosphane (3b) Using the MINDO/3 (a), MNDO (b), and HF-STO 3G (c) Model

		$-\epsilon_{j}(\mathrm{eV})$			
compd	Γ	a	b	c	MO type
cis-3c	3 e	8.80	11.09	6.07	lone pair
$\left(C_{3 v}\right)$	$3 \mathrm{a}_{1}$	9.74	12.07	8.54	lone pair
	2 e	10.80	13.21	9.94	Walsh
trans-3c	$6 \mathrm{a}^{\prime}$	8.67	11.10	6.12	lone pair
$\left(C_{s}\right)$	$3 \mathrm{a}^{\prime \prime}$	8.89	11.13	6.54	lone pair
	$5 \mathrm{a}^{\prime}$	9.37	11.58	7.36	lone pair
	$2 \mathrm{a}^{\prime \prime}$	10.62	13.23	9.95	Walsh
	$4 \mathrm{a}^{\prime}$	12.14	14.49	11.49	Walsh
cis-3b	6 e	8.26	10.12		lone pair
$\left(C_{3 v}\right)$	$5 \mathrm{a}_{1}$	9.43	11.22		lone pair
	5 e	10.22	12.26		Walsh
$\operatorname{trans}-3 \mathrm{~b}$	$11 \mathrm{a}^{\prime}$	8.14	10.20		lone pair
$\left(C_{s}\right)$	$7 \mathrm{a}^{\prime \prime}$	8.35	10.22		lone pair
	$10 \mathrm{a}^{\prime}$	8.99	10.84		lone pair
	$6 \mathrm{a}^{\prime \prime}$	10.15	12.24		Walsh
	$9 \mathrm{a}^{\prime}$	11.31	13.17		Walsh

symmetry from $C_{3 v}$ to $C_{2 v}$ and add an additional high-lying lone pair on the P atom to the upper valence orbitals.
This qualitative picture is confirmed by the results of SCF calculations with semiempirical (MINDO/3, MNDO) or the Hartree Fock SCF methods. As shown in Table II the lone pair at the P atom is predicted to be the highest occupied molecular orbital (HOMO), followed by two MO's which are related to e_{A} and e_{S} of the cyclopropane ring but considerably split in energy. Both MO's, $3 a^{\prime \prime}$ and $5 a^{\prime}$ in Table II can be described in a localized model as the two $\mathrm{P}-\mathrm{C} \sigma$-bonds (see Figure 1b). Replacing two CH_{2} units in a cyclopropane ring by PH moieties will likewise lead to diphosphirane 2c. Since in 2a both tert-butyl groups adopt the anti configuration we will focus on the trans configuration of 2. All the calculation methods used (see Table III) predict the two lone-pair combinations on P on top of two orbitals of Walsh-type character. The orbital energies predicted for the cis and trans isomer of either $2 b$ or $2 c$ are very close in energy. The energy difference of the two Walsh-type MO's is predicted to be somewhat larger for the cis isomer of 2 b and 2 c compared to the trans isomer.
In Table IV we have listed the orbital energies calculated for cyclotriphosphane (3 c$)^{23-25}$ adopting $C_{3 v}$ and C_{s} symmetry together
(23) Gleiter, R.; Böhm, M. C.; Baudler, M. Chem. Ber. 1981, 114, 1004.
(24) Schoeller, W. W.; Dabisch, T. J. Chem. Soc., Dalton Trans. 1983, 2411.

Figure 2. Correlation between the highest occupied MO's of trimethylcyclotriphosphane (3b) assuming $C_{3 v}$ and C_{s} symmetry, according to a MNDO calculation.
with the corresponding trimethyl congeners (3b). A comparison between the calculated (MNDO) orbital energies for $\mathbf{3 b}$ assuming $C_{3 c}$ and C_{s} symmetry shows a small split of the former 6e MO's and a slight stabilization if we compare the orbital energy of $6 e$ (10.12 eV) with the center of gravity of $11 \mathrm{a}^{\prime}$ and $7 \mathrm{a}^{\prime \prime}(10.21 \mathrm{eV}$), a destabilization of $5 \mathrm{a}_{1}$, and a large split of the former 5 e MO's (see Figure 2). If we compare the orbital energy of 5 e (12.26 eV) with the center of gravity of $6 \mathrm{a}^{\prime \prime}$ and $9 \mathrm{a}^{\prime}(12.71 \mathrm{eV})$ we recognize a considerable stabilization of 5 e when reducing the symmetry. The reduction of symmetry from C_{30} to C_{s} leads furthermore to a strong mixing between the lone pairs e(n), $a_{1}(n)$ and the Walsh orbitals. This can be seen from the wave function contour diagrams shown in Figure 3. This plot presents those valence MO's of $\mathbf{3 b}$ which are symmetric with respect to the plane of symmetry ($x z$ plane), i.e., $11 a^{\prime}\left(\mathrm{n}_{1}\right), 10 \mathrm{a}^{\prime}\left(\mathrm{n}_{3}\right)$, and $9 \mathrm{a}^{\prime}\left(\mathrm{n}_{3}\right)$. The

[^3]

Figure 3. Wave function contour diagrams for $6 e\left(n_{1}\right), 5 e\left(W_{2}\right)$ and $5 \mathrm{a}_{1}\left(\mathrm{n}_{3}\right)$ of 3b according to a MINDO/3 calculation. The contours are drawn in the $x z$ plane (left) and in a plane $0.1 \AA$ above the $x y$ plane (right).

Table V. Calculated Orbital Energies and Wave Functions of Thiadiphosphirane (4c) and Dimethylthiadiphosphirane (4b) Using the MNDO (a) and the HF-STO 3G Method (b)

compd	Γ	$-\epsilon_{j}(\mathrm{eV})$		$\begin{gathered} \% \mathrm{P} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \% \mathbf{S} \\ \mathrm{a} \end{gathered}$
		a	b		
4b	$9 a^{\prime}$	10.12		42.2	48.8
	$6 \mathrm{a}^{\prime \prime}$	11.18		62.2	15.6
	$8 \mathrm{a}^{\prime}$	11.52		55.9	30.9
	$7 \mathrm{a}^{\prime}$	12.54		41.3	45.6
	$5 \mathrm{a}^{\prime \prime}$	13.09		32.0	33.6
4b$\left(C_{2}\right)$	7b	10.46		18.6	70.3
	8 a	10.60		85.6	0.1
	7a	11.76		54.6	24.7
	6b	12.25		36.9	49.9
4c $\left(C_{s}\right)$	$6 \mathrm{a}^{\prime}$	10.73	6.34	29.1	62.7
	$5 \mathrm{a}^{\prime}$	11.94	7.28	74.4	24.0
	$3 \mathrm{a}^{\prime \prime}$	13.22	8.19	64.4	21.2
	$4 \mathrm{a}^{\prime}$	13.94	10.03	53.2	46.7
4c$\left(C_{2}\right)$	4b	10.87	6.40	13.4	77.2
	5a	11.32	7.15	93.0	0.0
	4 a	12.47	8.65	60.9	30.5
	3b	12.81	9.09	46.9	52.6

Figure 4. Correlation between the highest occupied MO's of $4 b$ assuming C_{s} and C_{2} symmetry, according to a MNDO calculation.

Table VI. Calculated Orbital Energies and Wave Functions of Azadiphosphirane (5c) and Trimethylazadiphosphirane (5b) Using the MNDO (a) and the HF-STO 3G (b) Method

compd		$-\epsilon(\mathrm{eV})$		$\begin{gathered} \% \mathrm{P} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \% \mathrm{~N} \\ \mathrm{a} \end{gathered}$
		a	b		
5b	$11 a^{\prime}$	9.24		38.5	38.1
	$10 a^{\prime}$	10.71		54.4	22.1
	$7 \mathrm{a}^{\prime \prime}$	10.82		64.5	6.9
	$6 \mathrm{a}^{\prime \prime}$	12.71		23.3	15.9
	$9 a^{\prime}$	12.97		40.2	12.9
${ }^{\mathbf{5 b}}{ }_{\left(C_{2}\right)}$	$\mathrm{b}^{\text {a }}$	9.59		20.3	53.3
	a	9.81		87.5	0.3
	a	11.60		54.5	5.2
	b	12.04		38.0	28.8
	b	13.34		26.7	8.3
5c	$6 \mathrm{a}^{\prime}$	9.99	6.13	44.8	41.7
	$5 \mathrm{a}^{\prime}$	11.06	7.46	63.9	25.9
	$3 \mathrm{a}^{\prime \prime}$	11.58	8.30	69.7	7.3
	$2 \mathrm{a}^{\prime \prime}$	14.40	11.83	42.2	35.1
${ }^{5 c}\left(C_{2}\right)$	4 b	10.18	6.30	20.4	60.5
	5a	10.37	6.61	94.1	0.5
	4 a	12.32	9.67	63.6	5.3
	3b	13.25	10.28	55.5	44.1

${ }^{a}$ The methyl groups were not considered.
wave functions are calculated by the MINDO/ 3 method. The contours are plotted in the $x z$ plane (left) and $0.1 \AA$ above the $x y$ plane, i.e., above the P_{3} unit (right). The results of the thiadiphosphirane $\mathbf{4 c}$, its corresponding dimethyl compound (4b), as well as the azadiphosphirane (5 c) and its trimethyl derivative $\mathbf{5 b}$ are collected in Tables V and VI. In Figure 4 we have shown as an example a correlation between the MO's as predicted by MNDO for 4 b adopting C_{s} and C_{2} symmetry. As anticipated from the discussion of the P_{3} case we find a considerable mixing between P and S lone pairs as well as with the Walsh orbitals. We notice for $\mathbf{4}$ and 5 pronounced dependance of the energy difference from the conformation of the substituents.

PE Spectra

Figure 5 displays the PE spectra of $\mathbf{1 a}, \mathbf{4 a}, \mathbf{5 a}, 6$, and $\mathbf{7}$, and the measured vertical ionization energies of 1a-5a, 6, and 7 are collected in Table VII. The PE spectrum of 1a shows three bands clearly separated from a region of strongly overlapping bands starting at 11 eV . The PE spectra of 4 a and 5 a are related to that of $2 a^{23}$ in as far as we recognize four bands well separated from strongly overlapping bands. The spectra of 6 and 7 are related to that of 3 a as anticipated.

Figure 5. PE spectra of $\mathbf{1 a}$ and $\mathbf{4 a}, \mathbf{5 a}, \mathbf{6}$, and 7.
Table VII. Ionization Energies of 1a-5a, 6, and 7. All Values in eV

compd	$I_{\mathrm{v}, 1}$	$I_{\mathrm{v}, 2}$	$I_{\mathrm{v}, 3}$	$I_{\mathrm{v}, 4}$	$I_{\mathrm{v}, 5}$
1a	8.65	9.1	10.1		
2a	8.38	8.97	9.5	10.14	
3a	8.1	8.2	8.65	9.26	10.08
4a	8.14	8.7	9.6	10.0	10.9
5a	7.44	8.31	9.14	9.9	10.8
6	8.2	8.5	9.2	10.1	10.5
7	7.95	8.2	8.7	9.5	9.9

Interpretation of the PE Spectra

To interprete the PE spectra we rely on the validity of Koopmans' theorem, ${ }^{26}$ i.e., we assume that the negative value of the calculated orbital energy $\left(-\epsilon_{j}\right)$ can be set equal to the measured vertical ionization energy $\left(I_{v, j}\right)$. This implies that the wave

[^4]functions calculated for the ground state can also be used to describe the ionic states. This assumption, although a very crude one, seems to hold for the valence states of most molecules. PE investigations of P compounds have shown that Koopmans' assumption is valid. ${ }^{27}$ In the following discussion we will rely on the results of MO calculations presented in the previous chapter and we shall try to correlate the bands with those of related species.

PE Spectra of 1a-3a and 6a-7a

To discuss the PE spectra of $\mathbf{1 a - 3 a}$ we will start with the PE results of bicyclo[4.1.0]heptane, ${ }^{28}$ as a disubstituted cyclopropane. The first two peaks in the PE spectrum of this compound at 9.5

[^5]

Figure 6. Correlation between the first bands in the PE spectra of bicyclo[4.1.0]heptane and 1a-3a.

Figure 7. Correlation between the first bands in the PE spectra of $3 a$ and 8.
and 10.0 eV correspond to ionizations from the two Walsh-type orbitals shown in Figure 1. As discussed in the previous section we expect an additional MO in the valence region of 1a: the lone pair on P. From investigations on tertiary phosphines ${ }^{29}$ an ionization energy around 8.7 eV is anticipated. These empirical considerations are met by the MO calculations (see Table II) and the PE spectrum of 1 a which shows three bands at $8.65,9.1$, and 10.1 eV .

The analysis of the PE spectrum of 2a reported earlier ${ }^{23}$ is congruent with the results shown in Table III. The assignment of the first two bands to the two lone-pair combinations at the phosphorus agrees also with results obtained for diphosphines. ${ }^{30}$ Bands (3) and (4) at 9.5 and 10.1 eV are ascribed to ionization events from Walsh-type MO's. This assignment is confirmed by the comparison between the PE spectra of $\mathbf{1 a}$ and $\mathbf{2 a}$ shown in Figure 6.

The PE spectrum of 3 a fits very nicely into this picture. As pointed out in the previous chapter the lowering of molecular symmetry from C_{30} to C_{s} (see Figures 2 and 3) will cause a considerable mixing between the symmetrical Walsh (e_{s}) orbital and the a_{1} lone-pair combination. This gives rise to a considerable split of the formerly degenerate Walsh pair. The correlation given in Figures 2 and 3 justifies the previous assignment ${ }^{23}$ of bands (1) -(3) to lone-pair combinations and bands (4) and (5) to former Walsh MO's. The orbital sequence suggested for 3a parallels that of $\left(\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{P}\right)_{3}$ deduced from its PE spectrum. ${ }^{25}$ A further confirmation of the assignment of the PE spectra of $\mathbf{3 a}$ is due to Figure 7 which shows the correlation of the PE bands of the phosphorus cage compound $8\left(C_{30}\right)^{31}$ with the bands of $3 \mathrm{a}\left(C_{s}\right)$. A comparison between the PE bands of $\mathbf{3 a}$ and $\mathbf{8}$ yields a small shift toward lower

8
energy for bands (1), (2), and (5) but large shifts for bands (3) and (4). We can rationalize this difference by proceeding in two steps:

[^6]

Figure 8. Correlation of the first bands in the PE spectrum of 3a with those of 6 and 7.

Figure 9. Comparison between the first PE bands of $\mathbf{4 a}$ and $\mathbf{5 a}$.
(1) by splitting one of the endocyclic $\mathrm{C}-\mathrm{C}$ bonds of $\mathbf{8}$ and bending one alkyl group into the anti position of the other alkyl fragments and (2) by replacing the alkyl substituents in the resulting species by tert-butyl groups. Carrying out the first operation will stabilize n_{1} and n_{2} (see Figure 2) while n_{3} is destabilized. Exchanging the alkyl groups of the remaining bicyclic compound by tert-butyl groups will destabilize n_{3} and especially the Walsh-type orbitals because the corresponding wave functions show considerable substituent participation ($40-50 \%$). These qualitative considerations imply that tert-butyl substitution is mainly responsible for the destabilizations encountered in the comparison between 8 and 3a, as shown in Figure 7. This argumentation is supported by the observation that the replacement of one methyl group in trimethylamine by a tert-butyl substituent lowers the ionization energy by $0.5 \mathrm{eV} .{ }^{32}$ The influence of alkyl substituents on n_{1} and n_{2} is anticipated to be small since the corresponding wave functions are strongly localized on the P atoms (85%). Both steps taken together yield a strong destabilization of n_{3} and W_{1} but only a slight one of n_{1}, n_{2}, and W_{2}.

In Figure 8 we have correlated the first five bands of the PE spectrum of $\mathbf{3 a}$ with those of $\mathbf{6}$ and 7. A comparison between the bands of 3 a and 7 shows very little change in the ionization energies. A similar close relation is found when comparing the first band in the PE spectra of simple alkyl derivatives $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{X}\left(\mathrm{CF}_{3}\right)_{3-n}(n=1-3 ; \mathrm{X}=\mathrm{P}, \mathrm{As}) .^{29,33}$ The shift toward higher ionization energy by replacing one P center in $3 a$ by an As atom we ascribe to the reduced interaction between the $3 p$ atomic orbitals at P with the $4 p$ at As. In $3 a$ and 7 where the same fragments interfere, interaction is a maximum.

PE Spectra of 4 a and 5a

The results listed in Tables V and VI together with the correlation diagram shown in Figure 4 suggest the assignment of the first band in the PE spectrum of 4 a to the ionization of a MO which has a large 3 p contribution on S. In agreement with this assignment is the observation (Figure 5) that the first band is relatively intense as in the PE spectrum of thiirane. ${ }^{34}$ Bands (2) -(4) of 4a we assign to ionizations from MO's strongly localized on P ($\mathrm{n}_{+}, \mathrm{n}_{-}$) and Walsh-type MO's.

The correlation shown in Figure 9 between the first PE bands of $\mathbf{4 a}$ and 5 a indicates a parallel assignment of the PE spectrum of $5 a$ with that of $\mathbf{4 a}$. The first ionization energy of $5 a$ is found

[^7]to be relatively close to that of tertiary amines $(7.9-8.0 \mathrm{eV})^{35}$ thus supporting the assignment of an ionization event out of a N lone pair. Bands (3) and (4) of the PE spectrum of 5a are relatively close to those of the PE spectrum of 4 a which supports the assignment suggested in Figure 9.

Conclusive Remarks

Our model calculations combined with PE spectroscopic investigations reveal a consistent picture of the electronic structure of three-membered rings containing one to three phosphorus atoms. Due to the low symmetry of the species and the small energy separation between the basis orbital energies of the C-P, P-S, or $\mathrm{P}-\mathrm{N} \sigma$-bonds on one side and the lone pairs on P or the heteroatoms on the other, we encounter a strong mixing for most MO's. Due to this strong mixing the localization properties of the wave function of the HOMO depends on the substituents.

To illustrate this and to point out its consequence for the reactivity of phosphorus compounds, we mention the cage compounds 9 and 10 . While 9 reacts readily with transition-metal carbonyls like $\mathrm{Cr}(\mathrm{CO})_{6}$ to yield $\mathrm{P}_{4}\left[\mathrm{SiMe}_{2}\right]_{3} \cdot \mathrm{Cr}(\mathrm{CO})_{5}(11),{ }^{36}$ it is much more difficult to obtain a similar complex with $10 .{ }^{37}$ This difference has been rationalized by recognizing that the HOMO of 9 is a lone-pair combination localized at the basal threemembered ring while for $\mathbf{1 0}$ the HOMO is localized at the equatorial P atoms. ${ }^{38}$

$\mathrm{X}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$
$X=\mathrm{PCH}_{3} \quad 10$

11

Experimental Section

The syntheses of compounds $1 \mathrm{a},{ }^{9} 4 \mathrm{a},{ }^{12} \mathbf{5 a},{ }^{13} 6,{ }^{14}$ and 7^{5} have been reported in the literature. The PE spectra were recorded on a UPS 200 spectrometer of Leybold Heraeus at the following temperatures: 1a, 25 ${ }^{\circ} \mathrm{C} ; 4 \mathrm{a}, 45^{\circ} \mathrm{C} ; 5 \mathrm{a}, 25^{\circ} \mathrm{C} ; 6,30^{\circ} \mathrm{C}$; and $7,50^{\circ} \mathrm{C}$. The spectra were calibrated with Ar and Xe .

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF Aktiengesellschaft, Ludwigshafen, for financial support. Thanks are due to A. Flatow for the PE measurements.

Registry No. 1a, 99017-58-0; 1b, 99017-51-3; 1c, 6569-82-0; 2a, 68969-73-3; cis-2b, 99017-57-9; trans-2b, 99017-52-4; cis-2c, 99017-56-8; trans-2c, 99017-53-5; 3a, 61695-12-3; cis-3b, 99095-39-3; trans-3b, 91121-28-7; cis-3c, 99095-38-2; trans-3c, 89254-38-6; 4a, 79898-83-2; 4b, 99017-54-6; 4c, 93109-87-6; 5a, 82775-02-8; 5b, 99017-55-7; 5c, 77680-27-4; 6, 77614-73-4; 7, 76173-66-5.
(38) Gleiter, R.; Böhm, M. C.; Eckert-Maksic̄, M.; Schäfer, W.; Baudler, M.; Aktalay, Y.; Fritz, G.; Hoppe, K. D. Chem. Ber. 1983, 116, 2972.

Kinetic Isotope Effect Associated with the Dissociative Addition of Dihydrogen to trans $-\operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}{ }^{\text {1a }}$

Peng Zhou, ${ }^{\dagger+1 b}$ Arturo A. Vitale, ${ }^{\text {+1c }}$ Joseph San Filippo, Jr., ${ }^{\boldsymbol{+}}$ and William H. Saunders, Jr. ${ }^{*} \ddagger$
Contribution from the Departments of Chemistry, Rutgers University, New Brunswick, New Jersey 08903, the University of Rochester, Rochester, New York 14627. Received April 19, 1985

Abstract

The temperature dependence of the kinetic isotope effect for the dissociative addition of dihydrogen and dideuterium to trans- $\mathrm{Ir}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$ in toluene has been determined between 0 and $30^{\circ} \mathrm{C}$. Model calculations based on these data suggest that the transition state for dissociation is best formulated as triangular with reactant-like character and involves substantial hydrogen tunneling. The weak KIE ($k_{\mathrm{H}} / k_{\mathrm{D}} \approx 1-2$) generally observed for the dissociative addition of dihydrogen to transition-metal complexes is seen to be a consequence of the product of an unusually large MMI factor, a moderately inverse EXC term and a substantially inverse ZPE factor. Only the tunnel correction prevents the overall KIE from being inverse.

The addition of dihydrogen to a transition-metal center is an obligatory step in many catalytic cycles, and a variety of model systems have been investigated in an effort to understand the nature of such processes. ${ }^{2}$ Of these, the addition of dihydrogen to trans $-\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$ (1) has been examined in greatest detail.

[^8]Table I summarizes some of the previously determined kinetic parameters related to the addition of dihydrogen to $1 .^{3-5}$
Kinetic isotope effects afford a powerful technique with which to probe reaction mechanisms. ${ }^{6}$ Despite this fact, there has been little effort to apply it to the dissociative addition of dihydrogen
(3) Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1966, 88, 3511.
(4) (a) Strohmeier, W.; Onoda, T. Z. Naturforsch. 1968, 23b, 1377. (b) Strohmeier, W.; Onoda, T. Ibid. 1968, 23b, 1527. (c) Strohmeier, W.; Onoda, T. Z. Naturforsch. 1969, 24b, 515. (d) Strohmeier, W.; Muller, F. J. Z. Naturforsch. 1969, 24b, 770. (e) Strohmeier, W.; Muller, F. J. Ibid. 1969, 24b, 931. (f) Strohmeier, W.; Onoda, T. Z. Naturforsch. 1969, 24b, 1185. (5) (a) Vaska, L.; Werneke, M. F. Trans. N.Y. Acad. Sci. 1971, 31, 70. (b) Vaska, L. Acc. Chem. Res. 1968, 1, 335.
(6) Cf.: Melander, L.; Saunders, W. H., Jr. "Reaction Rates of Isotopic Molecules"; Wiley: New York, 1980

[^0]: ${ }^{+}$Institut für Organische Chemie der Universität Heidelberg.
 ${ }^{\ddagger}$ Institut für Anorganische Chemie der Universität Köln.

[^1]: (1) Baudler, M. Angew. Chem. 1982, 94, 520; Angew. Chem., Int. Ed. Engl. 1982, 21, 492. Baudler, M. Z. Chem. 1984, 24, 352 and references therein.
 (2) Cowley, A. H.; Furtsch, T. A.; Dierdorf, D. S. J. Chem. Soc., Chem. Commun. 1970, 523 . Smith, L. R.; Mills, J. L. J. Am. Chem. Soc. 1976, 98, 3852. Wolcott, R. A.; Mills, J. L. Inorg. Chim. Acta 1978, 30, L 331.
 (3) Baudler, M.; Carlsohn, B.; Böhm, W.; Reuschenbach, G. Z. Naturforsch. 1976, B31, 558. Baudler, M.; Carlsohn, B.; Kloth, B.; Koch, D. Z. Anorg. Allg. Chem. 1977, 432, 67. Baudler, M.; Koch, D.; Tolls, E.; Diedrich, K. M.; Kloth, B. Ibid. 1976, 420, 146.
 (4) Baudler, M.; Habermann, D. Angew. Chem. 1979, 91, 939; Angew. Chem., Int. Ed. Engl. 1979, 18, 877.
 (5) Baudler, M.; Bachmann, P. Angew. Chem. 1981, 93, 112; Angew. Chem., Int. Ed. Engl. 1981, 20, 123.
 (6) Fritz, G.; Hölderich, W. Naturwissenschaften 1975, 62, 573; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 440, 171.
 (7) von Schnering, H. G. Angew. Chem. 1981, 93, 44; Angew. Chem., Int. Ed. Engl. 1981, 20, 33. von Schnering, H. G. In "Homoatomic Rings, Chains and Macromolecules of Main Group Elements"; Rheingold, A. L., Ed.; Elsevier Scientific Publishing Co.: Amsterdam, 1977; p 317 and references therein.
 (8) Ellermann, J.; Schössner, H. Angew. Chem. 1974, 86, 646; Angew. Chem., Int. Ed. Engl. 1974, 13, 601. Thiele, G.; Zoubek, H.; Lindner, A.; Ellermann, J. Angew. Chem. 1978, 90, 133; Angew. Chem., Int. Ed. Engl. 1978, 17, 135. Schmettow, W.; von Schnering, H. G. Angew. Chem. 1977, 89, 895; Angew. Chem., Int. Ed. Engl. 1977, 16, 857.
 (9) Baudler, M.; Germeshausen, J. Chem. Ber. 1985, 118, 4285.
 (10) Baudler, M.; Saykowski, F. Z. Naturforsch. 1978, B33, 1208.
 (11) Baudler, M.; Hahn, J.; Dietsch, H.; Fürstenberg, G. Z. Naturforsch. 1976, B31, 1305.
 (12) Baudler, M.; Suchomel, H.; Fürstenberg, G.; Schings, U. Angew. Chem. 1981, 93, 1087; Angew. Chem., Int. Ed. Engl. 1981, $20,1044$.
 (13) Baudler, M.; Kupprat, G. Z. Naturforsch. 1982, B37, 527.
 (14) Baudler, M.; Klautke, S. Z. Naturforsch. 1981, B36, 527.
 (15) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899, 4907. Bischof, P.; Friedrich, G. J. Comput. Chem. 1982, 3, 486.
 (16) Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. J. Am. Chem. Soc. 1975, 97, 1285. The calculations were carried out with MOPN (QCPE 1979, 12, 383^{17}) with use of modified parameters. ${ }^{18}$
 (17) Bischof, P. J. Am. Chem. Soc. 1976, 98, 6844.
 (18) Frenking, G.; Götz, H.; Marschner, F. J. Am. Chem. Soc. 1978, 100, 5295.
 (19) Gaussian 80: Binkley, J. S.; Whiteside, R. A.; Hariharan, P. C.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. QCPE 1978, 14, 468.

[^2]: ${ }^{a}$ Local C_{s} symmetry was assumed.
 for $4 c$ and $5 c$ those by MNDO were used. The most relevant data are listed in Table I.

 A comparison between the bond distances obtained for $\mathbf{3 b}$ with those reported for 3a shows that the MINDO/ 3 results are closer to the experiment $(\mathrm{P}-\mathrm{P}=2.20 \AA, \mathrm{P}-\mathrm{C}=1.90 \AA)^{20}$ than those results derived from the MNDO method. Together with the structural parameters our calculations yield the MO's of 1-5. We will first discuss the energy sequence of the MO's and the form of the wave functions for 1-5.

 As a starting point we will use the occupied valence orbitals of cyclopropane. Numerous calculations have shown that the highest occupied MO's of cyclopropane are the two e^{\prime} orbitals (e_{A}, e_{S}) shown in Figure la. ${ }^{21}$ For a qualitative treatment this Walsh
 (20) Hahn, J.; Baudler, M.; Krüger, C.; Tsay, Y.-H. Z. Naturforsch. 1982, B37, 797.
 (21) Gleiter, R. Top. Curr. Chem. 1979, 86, 197. de Meijere, A. Angew. Chem. 1979, 91, 867; Angew. Chem., Int. Ed. Engl. 1979, 18, 809 and references therein.

 Figure 1. (a) Schematic representation of the highest occupied MO's of a cyclopropane ring as obtained by MNDO. (b) Schematic representation of the highest occupied MO's of $\mathbf{1 b}$ and $\mathbf{1 c}$ as obtained by MNDO.
 picture is sufficient while for a more sophisticated treatment some corrections have to be added. ${ }^{22}$
 Replacing one CH_{2} center by a PH group will give the phosphirane 1c. The introduction of the P atom will reduce the
 (22) Spanget-Larsen, J.; Gleiter, R.; Detty, M.; Paquette, L. A. J. Am. Chem. Soc. 1978, 100, 3005. Honegger, E.; Heilbronner, E.; Schmelzer, A.; Jiang-Qi, W. Isr. J. Chem. 1982, 22, 3. Honegger, E.; Heilbronner, E.; Schmelzer, A. Nouv. J. Chim. 1982, 6, $\$ 19$.

[^3]: (25) Cowley, A. H.; Dewar, M. J. S.; Lattmann, M.; Mills, J. L.; McKee, M. J. Am. Chem. Soc. 1978, 100, 3349.

[^4]: (26) Koopmans, T. Physica 1934, 1, 104.

[^5]: (27) Bock, H. Pure Appl. Chem. 1975, 44, 343. Cowley, A. H. In "Homoatomic Rings, Chains and Macromolecules of Main Group Elements"; Rheingold, A. L., Ed.; Elsevier Scientific Publishing Co.: Amsterdam, 1977; p 59 .
 (28) Heilbronner, E.; Gleiter, R.; Hoshi, T.; de Meijere, A. Helc. Chim. Acta 1973, 56, 1594.

[^6]: (29) Elbel, S.; Bergmann, H.; Ensslin, W. J. Chem. Soc. Faraday Trans. 2 1974, 70, 555.
 (30) Cowley, A. H.; Dewar, M. J. S.; Goodman, D. W.; Padolina, M. C. J. Am. Chem. Soc. 1974, 96, 2648.
 (31) Gleiter, R.; Köppel, H.; Hofmann, P.; Schmidt, H. R.; Ellermann, J. Inorg. Chem., in press.

[^7]: (32) Nelsen, S. F. J. Org. Chem. 1984, 49, 1891.
 (33) Gleiter, R.; Goodman, W. D.; Schäfer, W.; Grobe, J.; Apel, J. Chem. Ber. 1983, 116, 3745.
 (34) Schweig, A.; Thiel, W. Chem. Phys. Lett. 1973, 21, 541.

[^8]: (1) (a) Supported by the NSF, Grant CHE 83-12730. (b) Visiting Scholar, Institute for Applied Chemistry, Changchun, People's Republic of China. (c) Postdoctoral Fellow, Consejo Nacional de Investigaciones Cientificas y Technicas de la Republica Argentina.
 (2) For a discussion, see: Collman, J. P.; Hegedus, L. "Principles and Applications of Organotransition Metal Chemistry;" University Science Books: Mill Valley, CA, 1980; p 187. James, B. R. "Homogeneous Hydrogenation"; Wiley: New York, 1973; pp 288-294. Lukehart, C. M. "Fundamentals of Transition Metal Organometallic Chemistry"; Brook/Cole: Belmont, CA, 1985; Chapter 10. Brown, J. M.; Parker, D. Organometallics 1982, 1, 950.

